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SUMMARY

A computer program for automatic com-
putation of first order general planetary per-
turbations is described. The program is based
on Hansen's theoryas given in the Auseinander-
setzung. As examples the general perturbations
of six minor planets are given,
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COMPUTATION OF GENERAL
PLANETARY PERTURBATIONS, PART |

by
Lloyd Carpenter
Goddard Space Flight Center

INTRODUCTION

The need for general perturbations of minor planets, comets and artificial satellites has been
widely recognized, and these series developments remain of interest despite well developed tech-
niques for numerical integration on electronic computers. For purposes of long range predictions
and studies of stability of orbits with peculiar elements, the perturbations in series are of particular
importance. As artificial satellites are launched into orbits with larger semi-major axes, the study
of their behavior under the influence of the moon will bear close resemblance to the planetary or
cometary problem. Advances in the speed and capabilities of electronic computers have reduced the
programming of general perturbations to a reasonable task.

With these facts in mind a program was developed for automatic machine computation of general
planetary perturbations using Hansen's theoryas given in the Auseinandersetzung (1857) (Reference 1).
Hill's modification for computing the perturbations in the radius vector (Reference 2) and Herrick's
suggested use of Gibbs' vectorial elements have been included. Hansen's method was chosen because
it can be applied to a wide range of eccentricities and inclinations. No exposition of the theory will be
given since no modifications have been made. The details involved in the computational procedure are
presented in Appendix A. Perturbations for several minor planets are given in Appendix B.

GENERAL DISCUSSION OF COMPUTATIONS

The computational procedure was taken from Herget (Reference 3) except that the Laplace coef-
ficients are computed directly. The program takes the elements of the disturbed and disturbing
bodies as the input data and prints out the coefficients in the series for the perturbations of first
order as the results. The time required on the IBM 7094 for each set of perturbations is approxi-
mately 1 minute per planet.



The following set of equations is used in developing the series for the perturbations (Reference
3, Equations 8, 6):*

3a0Q - 3m’aA”l + (-3H) ,
a0 '2 -2 1 1
ar gr -~ m’aA"3(r*-§“‘“>—g(3aQ) + 5 (- 3H)
aQ
al 37 = m'a(/f"" r"3) z',
- 1 9(3aQ) Q_Q]
W - J[S M JE + Nar Jar dE ,

aQ
R -~ an2ﬁdE,

ndz - J‘\—V(l ~ ecosE)dE ,

e 1
Xo ~6X%X ~2V,

O

A major part of the computation is spent in the development of A"! and A~3 where A is the dis-
tance between the disturbed and disturbing bodies. These quantities are expanded into double Fourier
series in terms of the eccentric anomalies by taking the first sixteen Laplace coefficients and apply-
ing harmonic analysis with twenty-four equally spaced values of the eccentric anomaly of the disturbed
body. Representing the argument of any term in the form (iE-jJE'), the terms which are computed
correspond to j = 0 through 15 and i = j ~ 11 through j + 11. The derivatives of the disturbing
function

3(3aQ) a0 , 90
JgE * argr: and a7

are obtained by simple operations on the series A™! and A™3. These series are then transformed to
arguments of the form (iE- j¢) where

& :‘n? (E—go) + go'

*See Appendix A for notation used and computational details.



by applying the Bessel transformations. The multiplications by the M, N, and Q expressions which are
given in the Collection of Formulas are combined with the term by term integrations by forming sums
of products of coefficients and dividing by i ~j n'.n. The constant terms yield terms factored by E
after the integration, and these are converted to coefficients of time by replacing E by nt + e sinE. The
replacement bar operation is accomplished by considering the temporary angle H to be the same as
E and combining corresponding coefficients. After the formal integration is completed, the constants
of integration are determined so as to satisfy the initial conditions.

The perturbations are used in the following manner. For any given time, solve the Kepler's

equation
E-esinE = g, +tn (t—to)

to obtain the undisturbed eccentric anomaly E. E must not be reduced modulus 360° because it appears
in the non-integer multiples through ¢. With this value of E the argument for each term is computed:

. . _ - -n‘ . n’ L
iE - j¢ = (i-j g )E+ ?go-go>

Evaluate the series for nsz, » and u by multiplying the coefficients by the cosine or sine of iE- j¢ and
adding the terms of the series. With the value of néz Kepler's equation is solved for the disturbed
eccentric anomaly

E - esinE = go t N (t-to) + ndz .
The disturbed position vector is then given by

r = (1+v) [A(cosE-e)+BsinE+Cu]

The velocity vector may also be determined, but with less accuracy, by evaluating the derivatives of
the series for the perturbations. Thus for any given time the osculating elements of the disturbed
motion may be obtained. Taking v = dr/dr where = = k (t - t )and k is the Gaussian constant, we have

- — dv
v = [A(cosE—e) +BsinE+Cu]a;

- —1 dE d
+ (1+v){[-AsinE+BcosE] gg+ Ca% '

where
d
dE a ¥ 4 I (ndz)
dr = 1-ecosE ’



and the derivatives of the perturbations are computed by using the relation

dr rva dF

The example given by Herget (Reference 3)of the perturbations of (1286) Banachiewizca by Jupiter
was used to check all the intermediate results during the programming process. After the program
was completed, a comparison was made with the first order perturbations of (13) Egeria computed by
Hansen and given in his original work (Reference 1). The agreement in the perturbations due to
Jupiter and Saturn in this case were most encouraging, the largest difference between corresponding
periodic terms was less than 1 second of arc, while for the secular and mixed terms the differences
were of the order of 107% seconds of arc or less. For the small perturbations due to Mars there was
some disagreement. These comparisons were made without including the constants of integration,
since Hansen computed these terms once including the perturbations due to Jupiter, Saturn and Mars
together. Additional comparisons were made with various perturbations which have been computed
using the same method. The elements given by the original authors were used for these comparisons.
The examples of perturbations given in Appendix B are based on the elements of minor planets given
in Reference 4 and the elements of Jupiter given by Clemence (Reference 5). The main differences
in the perturbations computed using different sets of elements appear in the terms affected by the
constants of integration and in the long period terms associated with small divisors.

CONCLUSION

We now have the facility for automatic computation of Hansen's first order planetary perturba-
tions. These perturbations are sufficiently accurate for the practical purposes of identification and
producing ephemerides in the case of planetary-type motion.

Several authors have made contributions to the development into Fourier series of lunar pertur-
bations of artificial satellites. The works of Kozai (Reference 6); Musen, Bailie and Upton (Reference
7); and Kaula (Reference 8) should be mentioned. The analytic development in powers of the ratio of
the semi-major axes converges rapidly for close earth satellites, but for more distant satellites the
convergence is slow. For the latter cases one must apply harmonic analysis as in Hansen's planetary
theory. For this reason the program described in this article is now the most efficient method of
treating periodic perturbations of cislunar satellites.

The continuation of this work has several different aspects. A problem of considerable interest
and importance is increasing the range of applicability so that general perturbations of highly ec-
centric orbits can be computed. A modification of the present program which accomplishes this
purpose by direct double harmonic analysis will be described in Part II. A corresponding program
is planned using the mean anomaly as the independent variable for greater convenience in evaluating
the perturbations. For greater accuracy it is desirable to have a program for the computation of
perturbations of higher order. For this purpose the equations in rectangular coordinates given by
Musen and Carpenter (Reference 9) have a convenient form for programming. First order perturba-
tions in rectangular coordinates will be compared with Hansen's perturbations. It also would be



desirable to have a program using mean elements and a program for orbit correction based on gen-

eral perturbations.
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Appendik A

Collection of Formulas

NOTATION
g 4, €, n, o O i, the osculating elements of the disturbed body
g, a, e, n, o, 0,1 the orbital elements of the disturbing body
Q the disturbing function
r the position vector of the disturbed body

v the velocity vector of the disturbed body

r’ the position vector of the disturbing body

A the mutual distance 4? = r?+r'? - 2r-r
m’ the mass of the disturbing body

= mar- ¢T3

H the fictitious eccentric anomaly to be replaced by E after the integration
E the eccentric anomaly of the disturbed body

A the vector of length a in the direction of perigee of the undisturbed orbit

B the vector of length ay1-e? in the direction 90° in advance of perigee of the
undisturbed orbit

C the vector of length a in the direction of the angular momenturn of the undis-
turbed orbit; the vectors A, B, and ¢ are referred to the equatorial system
of coordinates

Z the coordinate in the direction of C

ndz the perturbation in the mean anomaly
v the perturbation in the length of the radius vector
u the perturbation normal to the orbit plane

= E(E ) e

Fy

E, the eccentric anomaly of the disturbed body at the epoch

¢ the obliquity of the ecliptic

b () the Laplace coefficients



For purposes of computation, the remaining symbols used in the Collection of Formulas are de-
fined by the expressions in which they appear.

THE PROCEDURE
1. Take the osculating elements

a, e, i, «w, §, gy, N

of the disturbed planet and the elements

of the disturbing planet as input data.

2. Evaluate the vectors

cos wcos ] - sinwsinfcos i

A = aGle) - coswsin{] + sinwcosQcos i

’

sinwsin i

-sinwcos )} — coswsin{lcos i

B = a¥l -e?2Gle) - -sinwsinQ + coswcos Qcos i

’

cos wrsin i

sin(Qsini

C = aGle) - ~cos{sini ,

cos i

and the corresponding primed vectors for the disturbing planet. The rotation matrix G(¢) refers
the vectors to the equatorial system of coordinates:

1 0 0
Gle) 0 cos € -sine
0 sin € cos €

3. Compute the dot products
A-A A-B B A



4. Carry out steps 4a through 4e for each of the following values of the eccentric anomaly E of the
disturbed planet: E = 0°% 15° 30° - - -, 345°

a. Compute the following quantities:

r = all-ecosE)
Kcosy = 2e’a’? —2eA - A" + 2A - A'cosE + 2B - A’ sinE
Ksiny: = -2A - B + 24 - B 'cosE + 2B * B' sinE
H - a'2(1-2e'2) + 12 + e’ (Keos ¢ .

b. Solve by iteration forcC, q, and Q starting withCw/q? = 0, where w - a'2e'?:

K cos ¢

A0S 7 e /q?

inQ Ksing@
sin e
4 1 - Cw/q2

w .
C = H=+ —2(q51nQ)2 .
q

c. Compute the following quantities:



d. Compute the Laplace coefficients b () for s = 1/2 and 3/2 and j = 0 through 15 as follows:

i. Compute b{'* and b{'}’ by numerical evaluation of the integral

7/ 2 S 20
by - LY J T
0 yl - A?sin?4

ii. Compute b,(,?z’ for j = 13, 12, - - -, 0 by the recurrence relation

242 1 2j +3
L A | (A ! K)bl(rszﬂ) NV I SRV AR

iii. Compute b{!'5) from the equation

1+ A2 A

])(’115) = 99 =10 p1s)y 4 58 2 p(14)
372 (1—A2)2 172 (1_A2)2 1/2
iv. Compute b{’) for j = 0, 1, - - - , 14 from the recurrence relation
2
ba(/JZ) (25 + 1) %bf}z) - 2(25+1) A 2b1(/j2+1)
1 - A2 ' 1-A?

e. By taking k - q/2A, compute the following for s = 1/2 and 3/2 and j = 0 through 15
k™ b)) cos j Q'
ks b () sinj 0" .

5. Compute the coefficients C,'_h VST Cj',}", and S’,‘_; in the following expansions by harmonic anal-

ysis of the tabulated values:

K *bllcosjQ = ) I:C)"hcos(hE) ¥ S;hsjn(hE)]
h

K b(DsinjQ = ). [cj‘_;cos(hm + sjf;sin(hﬁ)} ,
h

fors = 1/2and 3/2; j = 0 through 15 and h = 0 through 11,

6. Compute the coefficients c¢;; and s, in the following expansions

[c-acos (E-E"+Q1]™" = )7 )" [e, cos (iE-JE') + s, sin (iE~E')]
i ]

10



for s = 1/2 and 3/2; j = 0 through 15 and i -~ j - 11 through j + 11 using the formula

[c - qeos (E-E'+ Q3] * = ) [(k*sn;ncosjq') cos j (E-E")

]
—(k_s b 02 sinj Q') sinj (E-E’ "]
7. Evaluate the coefficients C, and S, in the series

o 1+ E [c, , cos iE-jE*) + S, , sin (iE = jE*)]

(|

w
[1 - gcos(E-E’ '*O')]

for s = 1/2 and 3/2, and j = 0, 1, and 2 by harmonic analysis over E of the coefficients in the
first three terms of the binomial expansion of the left-hand side.

8. Obtain double Fourier series for A~! and 473 from the product
a"2s = [C - qeos (E-E" +Q"}] ° - [1 - 2 cos [E+E’ *Q’J] o

q

9. Expand (a’/r'})? in a cosine series in E’ by harmonic analysis of the expression
B - e
T {1~e'cosE")3
10. Evaluate the coefficients in the expression
(2r-r') = 2ee’A - A’
~2¢’'A - A'cosE - 2¢’B - A'sinE
+[A-A"-B-B]cos ~E-E') - [B-A"+A-BY] sin[-E-E")
- 2A-A'cos -E'! + 2eA-B'sin(-E’)
+[A-A" +B-B'] cos (E-E') + [B-A’-A-B'] sin [E-E") .

11. Evaluate the coefficients in the series

11



12. Evaluate the coefficients in the series

3aQ0 = 3m’ar™! + (-3H)

13. Evaluatethe coefficients inthe series ¢i3a0) 9E from those of 3a0 by differentiating term by term.

14. Evaluate the coefficients in the expression

1212 202
a e ace
(r'2-r2) = 2’2 -a? ¢ Ty - T

- 2a'2e'cos {(-E') + 2aZecosE

15. Evaluate the coefficients in the series
j§) 1 1
ar Zj;‘ = gma(r'2-r2) 473 - g (3aQ) + %(-3}()
16. Evaluate the coefficients in the expression

Z' = ~-C-A'e" +C - A'cos{(-E’') ~C - B'sin{~-E") .

17. Evaluate the coefficients in the series

18. Compute the Bessel function coefficients:

i

PO = -, (ke  for k,j = 1,2,3, -+, 15,
oo

PO(I) = -5

Po(j) = 0 for i 2 1,

where

12



and

I - 1imJ ix

19. Transform the series for ¢:3aQ) @E, ari{sQ or;, and atlo ez from arguments of the form iE - jE'

to arguments of the form iE -~ jg’using the expansion

4o

cos . I _cos | ‘

sin [1E-JE"! Z Pk(” sin (1E-kg"!
k=~

for each term.

20. Transform the series for ¢13aQ} 4E, ar{dQ ar!, and a2'9Q 4Z! from arguments 1iE - jeg’ to argu-

ments iE - j;, where : -~ (n’ niE~In’ nlg, - &, .using the expansion
+ L ,
cns{,_ o ( n’\cos L
sin [1E-jg": Jo-, \ie 5 )sin 'KE-180
P

where the Bessel functions are computed as in step 18.

21. Evaluate the coefficients in the expression

[

1
Q = esin.E ~?ezsin‘fZE‘ *7925'111 H-E

3 R WD U ,
—705111x,H, + {1 +73e Slan‘E‘—'Q‘(’Sln“H“2E}

22. Evaluate the coefficients in the series

. L, 99
R Q a kYA dE

(constants of integration are determined later). If, from step 21, we write Q in the form

Q - z Q, ; sin (kE + /H!
k.t

and if a210Q 9z} is written as

a? 77 CX’Jcos (1E - jbi - S“]Sln‘lE_]\;u

1)

13



14

then R may be written as

R = coE+clEcosH+ s,EsinH

+ 2 [A_“‘j cos [iF = j¢~H} + B_, ; | sin (i~ j¢-H)

i,

+ Ao,i,j cos {iE~ jp) + By i sin (iE - j¢)
+ Ay, ,cos (iE-j$+H) + B, | sinfiE—joﬁiH)} ;
where
_ 1 )
Co 2 (Sk,o S—k,o Quo -
"
I )
€y T 2 Z(Sk,o Sowo) Qo
k
_ 1 ( )
Sy 72 Z Cro * Cov0/ Qe
i«
_ 1
A"l i,] B n' C,+k H Qk,l ’
2{i-j i
_ 1
B"l i,j < . n') Z Sx+k J Qk | B
2~ k
- s )
AOXJ i ( . )Z Cﬁk’ Ci_k'j Qko,
2i-j k
- 1 )
BO i,] - ’ Z (Sl*k ] - Si_k») Qk 0
2(1 i By
_ 1
Aﬂ.x.j N n’ Z = Cini Q1
2(1‘ 15 k
1
B+1,i,j - . n’ Z - Si—-k,j Qk 1
2(1—1 ) K



except that for i = j = 0 all these coefficients are zero. For j = 0 the coefficients with nega-
tive values of i are combined with the coefficients with positive values of i. Thatis, A_, _, , is

added to A, , ,etc., where i is positive.

23. Evaluate the coefficients in the series

The bar operator means that u is obtained from R by considering the argument H to be the same
as E and adding corresponding coefficients. Thus, u will contain

COE + ClEcosE + SIEsinE

plus pure periodic terms where, for example, the coefficient of cos (iE- jy) will be

A + A, ..+ A

=1,i+1.j 0,i.,) +1,i~1,j

24. Evaluate the coefficients in the expressions

M*—}_%i+ 2e (E} - !
3 (1_92) 3(1_62) cos 6< — 2)cos(QE)
e 2 4 - o2
(l_ez)cos (H) + 3(1_82)cos(H+E) + 3(1—e2) cos (H-E)
- 3(1 2)c:os (H- 2E)
and
— € . ez . 2 .
N = (T—_-e—z) sin (E} - 2(1_ 2) sin (2E) + (—ez) sin (H+E)
e in(H) - 2% Gin(H-E) + oS sin (H- 2E)
ljl—e2) S1in (1_62) sSin (1—62) in

25. Evaluate the coefficients in the series

15



If

wj=

&

M, , cos (kE+[H) ,

N = Z Nklsin(kE+ZH) ,

k.,

d{3a)

!

—F - Z[Ci".cos(iE-jd:) +Siljsin(iE-j¢)] ,

i

and

B 1
A-l,i,j ( n'
2U-ji

1
~-1,i,; = n’
2(i—j ry

1
AO,:) = n
2(i~j Y

B 1
Boi.j . ’
2<1—] ey

16
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26.

217.

28.

29.

30.

31.

32.

) 1
B 2_( -,I,],_)_Z (lek.]Mk‘l—Sx—k,)Nk.l)
k

1] o
Evaluate the coefficients in W from w by considering H to be the same as E and combining coeffi-
cients as in step 23.

Evaluate the coefficients in the series

where X, is that part of the W series which does not contain H in the argument and X, is the re-
maining part of the W series with the temporary argument H set equal to zero. Thus, for example,
the coefficient of cos [iE -j¢! in » would be

O =

1
[Ao,m + 8<A-l‘i,j +A+l,i,j>j| N Y[A"l‘x+l,) A *A+1J~1,,]

Evaluate the coefficients in the series

néz :JW(I—ecosE)dE .

The coefficient of E? in néz should be zero.

Evaluate the coefficients in the series for dv/dE and du dE from the corresponding series for »
and u by differentiating term by term.

Convert the terms factored by E in each series to terms factored by time by replacing E by

nt +esinkE.

Compute numerical values of néz, », u, W, dv/dE, and du 'dE corresponding to the epoch of oscula-
tion by evaluating the series with E set equal to E,. Denote these values by zero subscripts.

Evaluate the constants of integration:

cos EO (du) sin E0
E +

1 0 l—ecosEO dEO 1 - ecosE,
) sin E0 (du> cos F‘o - e
12 S eCOSF.O -~ \dE 0 1 - e cos EO

17



. i [ _ } cosE/ du sinE,
1 T T[4 16y, l—ecosio_zaE—o lf—ecosE0
) [_ :l sinEO dv cos Eo - e
ky = - [4W+6y, 1—ecosE0+23F01-ecos_f;
k0 = —klcosEO - kzsinEO—WO
and
1 . e . e
C-g = - [(1 -7 ez) sinE; - 7 sin 2E0:' k, + [cos E, - F cos 2E0] k,

- (nSz)o

33. Add the constants of integration to the series coefficients:

a. In ndz add
1 e?
(C‘go) + (ko - jekl> nt + [(1 - “2—> kJ sinE

kl) sin 2E + (-kz) cosE + (‘2‘ k2> cos 2E ;

|

+ (-

b. In v add

¢. In uadd
(—Zle) t (Zl)cosE + ([2) sinE

34. Print out the coefficients in the series for the perturbations.

18



Appendix B

Some First Order Perturbations

First order general perturbations due to Jupiter are given for six minor planets:

(13)
(1286)
(132)
(241)
(1274)
(1373)

Egeria
Banachiewizca
Aethra
Germania
Delportia

1935 QN.

The orbital elements of the minor planets were taken from the Ephemerides of Minor Planets for
1962 (Reference B1). The elements of Jupiter were taken from Clemence (Reference B2) using the

values given for 1950:

MW = 302°36489+0°08308578116 (JD-2433282.0)

@' = 274.14275 e’ = 0.04846063
Q' = 99.80204 Ecliptic and Mean Equinox 1950.0 a' = 5.20298098 a.u.
it = 1.30710 n' = 0708308578116/day

m’ 1/1047.355

The value of ' is taken from the American Ephemeris and Nautical Almanac.

19



(13) Egeria

Epoch 1938 Dec 8.0 ET = JD 2429240.5
T = .0001 (JD-2429240.5)

M, = 317864
o = 178.013 e = 0.086199424
Q = 43.563 Ecliptic and Mean Equinox 1950.0 a = 2.5770 a.u.
i = 16.537 n 0723825639 per day
M, = 326.57371
A B C

- 1.2775339 - 2.1720939 + 0.5054949

+ 1.6594002 - 1.3084250 -~ 1.4705535

+ 1.5017412 -~ 0.4020153 + 2.0549637

Egeria is the planet for which Hansen originally computed general perturbations (Reference B3)
and later published tables (Reference B4). Further investigations and comparisons with observations
were made by Hoelling (Reference B5) and Samter (References B6 and BT7).

20



PERTURBATIONS OF EGERIA

[
WN=O N N ~O N~ O el

1 '
PWN=O

~On W [< JRV. I WY [« JE¢ I W N NBWN= DWN~O S UWUN= O

W

~N -~~~ o B¢ ¢ e N Nlv ] [SC,IRE, RV, IR | HPEP>p Wi W www NNV NDN NN Pt et et g et [eNeoNe) o000 [

mmm ®m

NejaNe]

(N8Z - 10%) degrees v - 106 u- 108
cos SIN cos SIN €ns SIN
5363 T 0T 8 0T -19 T
-293 T -105 T 92 -256 T 224 T -1557
6T 2T
363 0 -218 -0 22 0
-715 631 -545 -622 -106 -403
17 -20 9 2 -2 -1
-1 1 1 0 0 0
17 -11 -11 -19 14 11
-21 46 8 -8 8 52
-321 112 -68 -196 -24 -37
8 1 -3 2 -5 -24
-2 -0 -0 -3 -0 1
1 -1 0 -3 1 -0
36 33 30 -31 -23 43
-462 -492 217 -190 53 -61
-379 -523 546 -396 17 -25
10 11 2 1 -5 3
0 1 -1 0 0 -0
1 1 -0 -0 o -0
-20 -50 -52 21 18 -33
-1860 -1658 -237 106 59 16
26 2029 -1728 20 -457 -196
-37 7 -63 -46 -4 -1
0 -1 -0 -1 1 1
-0 -1 -1 0 -0 -1
2 -7 -6 -0 6 2
-10 90 -56 -13 -14 -20
-48 15 -20 -53 1 -16
13 4 -6 17 0 1
2 -1 -2 -1 2 -0
7 53 ~15 -2 -2 -2
-39 2 -4 -38 12 -15
7 8 -10 8 -3 1
-0 -4 5 0 0 -0
-1 1 1 1 -2 0
0 55 7 3 1 -2
41 -8 6 34 -14 10
1 5 -5 2 -3 -1
2 -3 3 2 1 1
-1 0 -0 -2 -0 -0
5 -1 0 3 -1 1
1 2 -3 1 -1 -1
1 -1 1 1 -0 1
-1 -0 0 -1 0 -0
5 -1 0 1 -0 0
1 2 -2 1 -1 -1
0 -0 0 1 -0 o
-0 -0 0 -1 0 -0
0 0 -1 0 -0 -0
1 -0 0 -0 -0 -0
-1 -2 1 -1 0 0
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(1286) Banachiewizca

Epoch 1951 Dec 20.0 ET = JD 2434000.5
T = .0001 (JD-2434000.5)

M, = 215072
w = 100.709 e = 0.093256863
Q = 201.315 Ecliptic and Mean Equinox 1950.0 a = 3.0219 a.u.
i= 9.707 n = 0718762278 per day
My = 2.06202
A B c

+ 1.5869835 + 2.5537900 - 0.1852088

~ 2.5133799 + 1.4943933 — 0.7496642

- 0.5443193 + 0.5453495 + 2.9215716

The general perturbations of Banachiewizca were previously computed and given by Herget (Ref-
erence B8) as an example.
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(132) Aethra

Epoch 1925 Jan 10.0 ET = JD 2424160.5
T = .0001 (JD-2424160.5)

M, = 1457191
w = 253.349 e = 0.38276405
0 = 259.662 Ecliptic and Mean Equinox 1950.0 a = 2.6123 a.u.
i = 25.161 n = 0723344222 per day
M, = 264.49794
A B C

- 2.0941885 - 1.0306821 - 1.0926239

+ 1.4719146 - 1.8667986 — 0.7579083

- 0.5214907 - 1.1300793 + 2.2485237

Aethra is an interesting planet having a large eccentricity and inclination. Its general perturba-
tions were previously computed by Herget (Reference B9). Accurate special perturbations using
Musen's method (Reference B10) were included in a differential correction by Musen (Reference B11)
and revealed certain errors in the observations. There is a term of long period corresponding to
i=5,j = 14,
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(241) Germania

Epoch 1951 Dec 20.0 ET = JD 2434000.5
T = .0001 (JD-2434000.5)

M, = 2377440
w = T4.116 e = 0.095828379
Q = 271.529 Ecliptic and Mean Equinox 1950.0 a = 3.0624 a.u.
i= 5.516 n = 0.18481972 per day
M)y = 2.06202
A B C

+ 2.9435085 + 0.7494468 - 0.2933036

- 0.8069138 + 2.6685677 - 1.2160512

- 0.0423471 + 1.2444521 + 2.7843020

First order general perturbations of Germania were previously computed by Kline and Herget
(Reference B12) and compared with special perturbations in order to draw conclusions concerning
the accuracy of first order general perturbations.
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(1274) Delportia

Epoch 1932 Oct 20.0 ET = JD 2427000.5
T = .0001 (JD-2427000.5)

M, = 214774119

= 242.98033 e = 0.1130022
Q = 327.42878 Ecliptic and Mean Equinox 1950.0 a = 2.2290079 a.u.
i = 4.40990 n = 0729616788 per day
M, = 140.46156
A B C
- 1.9192056 + 1.1226357 - 0.0922681
- 0.9698111 - 1.7192724 - 1.0167650
- 0.5870198 - 0.8299533 + 1.9814519

First order general perturbations of Delportia were previously computed by Herget (Reference
B13) and used to produce the ephemeris presently in use.
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(1373) 1935 QN

Epoch 1941 Jan 6.0 ET = JD 2430000.5
T = .0001 (JD-2430000.5)

M, = 2937612
w = 99.051 e = 0.32158820
Q = 298.068 Ecliptic and Mean Equinox 19500 a = 3.4111 a.u.
i = 38,902 n = 015644444 per day
M, = 29.71890
A B C
+ 2.,0607314 - 1.8497219 - 1.8902002
0.7243470 + 2.5384346 - 1.9809114
+ 2,6199827 + 0.7530860 + 2.0343883

(1373) was chosen as an example because it is one of the most interesting minor planets. It has a
large eccentricity and inclination and is the only known planet for which there exists alibration in the
argument of perihelion (Reference B14). The secular perturbations have been computed by Smith
(Reference B15) using Halphen's method. Smith's results verify the libration in perigee and disclose
large secular perturbations in the eccentricity and inclination. There is no dominant small divisor
for small values of the indices, and the series for the perturbations converges very slowly. The term

i = 8, j = 15 will contain some inaccuracy since the series are not computed beyond ; = 15. There
will be another significant termat i = 9, j = 17. A further study of this planet will be given in the
future.
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